R carパッケージを使用して,one way repeated measures ANOVA (MANOVA,自由度調整等)


反復測定一元配置分散分析をRでやってみる.
球面性の検定,MANOVA(多変量分散分析),自由度調整に対応.



被験者12人に3つの異なる課題を行った時の心拍数のデータ
課題の違いが心拍数に影響するかを検討した.


#元データ
> hr
           A              B             C
1     68.40091    61.26944   69.14174
2     66.47348    67.87263   63.69999
3     58.74087    69.42453   67.74671
4     61.75985    62.73467   60.55499
5     68.97954    58.57950   64.70531
6     79.49035    74.09208   78.25809
7     76.98589    69.97854   67.97938
8     63.32686    60.01100   65.60218
9     52.84034    55.29806   50.57370
10    55.48193    58.09929   54.38332
11    66.81270    60.35373   65.01257
12    72.95453    69.15551   65.85730
>

#元データを並べる.
> hrBind<-cbind(hr[,1],hr[,2],hr[,3])
> hrBind
          [,1]     [,2]     [,3]
 [1,] 68.40091 61.26944 69.14174
 [2,] 66.47348 67.87263 63.69999
 [3,] 58.74087 69.42453 67.74671
 [4,] 61.75985 62.73467 60.55499
 [5,] 68.97954 58.57950 64.70531
 [6,] 79.49035 74.09208 78.25809
 [7,] 76.98589 69.97854 67.97938
 [8,] 63.32686 60.01100 65.60218
 [9,] 52.84034 55.29806 50.57370
[10,] 55.48193 58.09929 54.38332
[11,] 66.81270 60.35373 65.01257
[12,] 72.95453 69.15551 65.85730

#要因を作る
> taskFactor<-factor(c(1,2,3))
> taskFrame<-data.frame(taskFactor)
> taskFrame
  taskFactor
1          1
2          2
3          3

#一般化線形モデルの適用
> hrModel<-lm(hrBind~1)

#パッケージcarの呼び出し
> library(car)

#ANOVA実行
> hrAnova<-Anova(hrModel,idata=taskFrame,idesign=~taskFactor)
Note: model has only an intercept; equivalent type-III tests substituted.

#結果の参照
> summary(hrAnova)

Type III Repeated Measures MANOVA Tests:

------------------------------------------

Term: (Intercept)

 Response transformation matrix:
     (Intercept)
[1,]           1
[2,]           1
[3,]           1

Sum of squares and products for the hypothesis:
            (Intercept)
(Intercept)    453430.8

Sum of squares and products for error:
            (Intercept)
(Intercept)    4142.154

Multivariate Tests: (Intercept)
                 Df test stat approx F num Df den Df     Pr(>F)  
Pillai            1   0.99095 1204.141      1     11 1.3654e-12 ***
Wilks             1   0.00905 1204.141      1     11 1.3654e-12 ***
Hotelling-Lawley  1 109.46740 1204.141      1     11 1.3654e-12 ***
Roy               1 109.46740 1204.141      1     11 1.3654e-12 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------------------------

Term: taskFactor

 Response transformation matrix:
     taskFactor1 taskFactor2
[1,]           1           0
[2,]           0           1
[3,]          -1          -1

Sum of squares and products for the hypothesis:
            taskFactor1 taskFactor2
taskFactor1    29.24055  -10.374834
taskFactor2   -10.37483    3.681093

Sum of squares and products for error:
            taskFactor1 taskFactor2
taskFactor1   227.59494    44.51865
taskFactor2    44.51865   242.11934

Multivariate Tests: taskFactor
                 Df test stat  approx F num Df den Df  Pr(>F)
Pillai            1 0.1426825 0.8321452      2     10 0.46314
Wilks             1 0.8573175 0.8321452      2     10 0.46314
Hotelling-Lawley  1 0.1664290 0.8321452      2     10 0.46314
Roy               1 0.1664290 0.8321452      2     10 0.46314

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

                SS num Df Error SS den Df         F    Pr(>F)  
(Intercept) 151144      1  1380.72     11 1204.1414 1.365e-12 ***
taskFactor      29      2   283.46     22    1.1201    0.3442  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Mauchly Tests for Sphericity

           Test statistic p-value
taskFactor        0.88151 0.53228


Greenhouse-Geisser and Huynh-Feldt Corrections
 for Departure from Sphericity

            GG eps Pr(>F[GG])
taskFactor 0.89406     0.3401

           HF eps Pr(>F[HF])
taskFactor 1.0561     0.3442
 警告メッセージ:
In summary.Anova.mlm(hrAnova) : HF eps > 1 treated as 1
>

コメント